2023-24 MATH2048: Honours Linear Algebra II Homework 9

Due: 2023-11-27 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. If T is invertible, then T^{*} is invertible and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.
2. Let V be an inner product space, and let T be a linear operator on V. Prove the following results.
(a) $R\left(T^{*}\right)^{\perp}=N(T)$.
(b) If V is finite-dimensional, then $R\left(T^{*}\right)=N(T)^{\perp}$
3. Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of V. If W is T-invariant, then W is also T^{*}-invariant.
4. Let T be a normal operator on a finite-dimensional inner product space V. Then $N(T)=N\left(T^{*}\right)$ and $R(T)=R\left(T^{*}\right)$.
5. Let U be a unitary operator on an inner product space V, and let W be a finitedimensional U-invariant subspace of V. Prove that
(a) $U(W)=W$
(b) W^{\perp} is U-invariant.

The following are extra recommended exercises not included in homework.

1. Suppose that A is an $m \times n$ matrix in which no two columns are identical. Then, $A^{*} A$ is a diagonal matrix if and only if every pair of columns of A is orthogonal.
2. Let $V=W \oplus W^{\perp}$ be an inner product space and T be the projection on W along W^{\perp}. Then $T=T^{*}$.
3. Let T be a linear operator on a finite-dimensional vector space V. Prove the following results.
(a) $N\left(T^{*} T\right)=N(T)$. Deduce that $\operatorname{rank}\left(T^{*} T\right)=\operatorname{rank}(T)$.
(b) $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right)$. Deduce from (a) that $\operatorname{rank}\left(T T^{*}\right)=\operatorname{rank}(T)$.
(c) For any $n \times n$ matrix $A, \operatorname{rank}\left(A^{*} A\right)=\operatorname{rank}\left(A A^{*}\right)=\operatorname{rank}(A)$.
4. Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of V. Prove the following results.
(a) If T is self-adjoint, then $\left.T\right|_{W}$ is self-adjoint.
(b) W^{\perp} is T^{*}-invariant.
(c) If W is both T - and T^{*}-invariant, then $\left(\left.T\right|_{W}\right)^{*}=\left.\left(T^{*}\right)\right|_{W}$.
(d) If W is both T - and T^{*}-invariant and T is normal, then $\left.T\right|_{W}$ is normal.
5. Let T be a self-adjoint operator on a finite-dimensional inner product space V. Prove that for all $x \in V$,

$$
\|T(x) \pm i x\|^{2}=\|T(x)\|^{2}+\|x\|^{2}
$$

Deduce that $T-i I$ is invertible and that $\left[(T-i I)^{-1}\right]^{*}=(T+i I)^{-1}$.
6. If T is a unitary operator on a finite-dimensional inner product space V, then T has a unitary square root; that is, there exists a unitary operator U such that $T=U^{2}$.

