2023-24 MATH2048: Honours Linear Algebra II Homework 9

Due: 2023-11-27 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

- 1. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. If T is invertible, then T^* is invertible and $(T^*)^{-1} = (T^{-1})^*$.
- 2. Let V be an inner product space, and let T be a linear operator on V. Prove the following results.
 - (a) $R(T^*)^{\perp} = N(T).$
 - (b) If V is finite-dimensional, then $R(T^*) = N(T)^{\perp}$
- 3. Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of V. If W is T-invariant, then W is also T^* -invariant.
- 4. Let T be a normal operator on a finite-dimensional inner product space V. Then $N(T) = N(T^*)$ and $R(T) = R(T^*)$.
- 5. Let U be a unitary operator on an inner product space V, and let W be a finitedimensional U-invariant subspace of V. Prove that
 - (a) U(W) = W
 - (b) W^{\perp} is U-invariant.

The following are extra recommended exercises not included in homework.

- 1. Suppose that A is an $m \times n$ matrix in which no two columns are identical. Then, A^*A is a diagonal matrix if and only if every pair of columns of A is orthogonal.
- 2. Let $V = W \oplus W^{\perp}$ be an inner product space and T be the projection on W along W^{\perp} . Then $T = T^*$.

- 3. Let T be a linear operator on a finite-dimensional vector space V. Prove the following results.
 - (a) $N(T^*T) = N(T)$. Deduce that $rank(T^*T) = rank(T)$.
 - (b) $\operatorname{rank}(T) = \operatorname{rank}(T^*)$. Deduce from (a) that $\operatorname{rank}(TT^*) = \operatorname{rank}(T)$.
 - (c) For any $n \times n$ matrix A, rank $(A^*A) = \operatorname{rank}(AA^*) = \operatorname{rank}(A)$.
- 4. Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of V. Prove the following results.
 - (a) If T is self-adjoint, then $T|_W$ is self-adjoint.
 - (b) W^{\perp} is T^* -invariant.
 - (c) If W is both T- and T*-invariant, then $(T|_W)^* = (T^*)|_W$.
 - (d) If W is both T- and T*-invariant and T is normal, then $T|_W$ is normal.
- 5. Let T be a self-adjoint operator on a finite-dimensional inner product space V. Prove that for all $x \in V$,

$$||T(x) \pm ix||^2 = ||T(x)||^2 + ||x||^2$$

Deduce that T - iI is invertible and that $[(T - iI)^{-1}]^* = (T + iI)^{-1}$.

6. If T is a unitary operator on a finite-dimensional inner product space V, then T has a unitary square root; that is, there exists a unitary operator U such that $T = U^2$.